Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2018

CS3BS03/IT3BS06 Discrete Mathematics

Programme: B.Tech. Branch/Specialisation: CSE/IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Let I be the set of integers, such that $f: I \to I$ defined by f(x) = 5x + 3. 1 Then this function is
 - (a) One-one onto

(b) One-one not onto

(c) Many one onto

- (d) None of these.
- ii. If $A = \{1, 2, 3\}$ and $R = \{(1, 1), (2, 2), (3, 3), (1,3)\}$ then relation R is called
 - (a) Reflexive relation
- (b) Anti-symmetric relation

(c) Identity relation

- (d) Symmetric relation.
- iii. Let (P, \leq) be a partially ordered set. An element n in P is said to be a 1 minimal element if for any $x \in P$
 - (a) $n \le x \Rightarrow x = n$

(b) $x \le n \Rightarrow x < n$

(c) $x \le n \Rightarrow x = n$

- (d) $x \le n \Rightarrow x \ne n$.
- iv. In Boolean algebra the value of boolean expression (a+b). a'. b' is
 - (a) 1 (b) a.b
- (c) 0
- (d) a+b.
- v. Let A be a non empty set and * be a binary operation on A. Then algebraic 1 structure (A, *) is called a semigroup if it satisfies _ _ _ _ laws.
 - (a) Closure and Associative
- (b) Commutative and Associative
- (c) Closure and Inverse
- (d) Identity and Commutative.
- vi. Which one of the following statements is false?
 - (a) Set $G = \{1, 2, 3, 4\}$ forms a Group under addition modulo 5.
 - (b) A group which has a generating set consisting of a single element is called a Cyclic group.
 - (c) The algebraic structure of the set of natural number (N, +) is a Groupoid.
 - (d) The multiplicative group $G = \{1, -1, i, -i\}$ is a Torsion group.

P.T.O.

1

1

vii. A graph in which all nodes are of equal degrees is known as (a) Multigraph (b) Regular graph (c) Complete graph (d) Euler graph. viii. The maximum number of edges in a simple connected graph with 12 1 vertices is (a) 60 (b) 62 (c) 64 (d) 66. ix. For recurrence relation $a_{r+2} - 6 a_{r+1} + 8 a_r = 0$, the respective degree and 1 order are: (d) 2 and 1. (a) 1 and 1 (b) 2 and 2 (c) 1 and 2 x. If $4^{n}P_{3} = 5^{n-1}P_{3}$ then (a) n = 25(c) n = 15(b) n = 10(d) n = 20. Q.2 i. Show that the relation $R = \{(a, b): a - b = even integer and a, b \in I\}$ in the set *I* of integers is an equivalence relation. ii. (a) By the Pigeonhole Principle find the minimum number of students 6 required in a class to be sure that at least 5 will receive the same grade if there are possible grades are A, B, C and D? (b) If A, B, C are three sets then prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$ OR iii. In a class of 100 students, 39 play Tennis, 58 play Cricket, 32 play Hockey, 6 10 play Cricket and Hockey, 11 play Hockey and Tennis, 13 play Tennis and Cricket. Using Principle of Inclusion and Exclusion find how many students play (a) All the 3 games, (b) Just one game, (c) Tennis and Cricket and not Hockey?

Prove that in a distributed lattice (L, \leq) if an element has a complement 4

ii. Use the Quine-McCluskey method to simplify the sum of products 6

OR iii. Define partial order relation. In a Boolean algebra (B, \land, \lor, \lor) if a relation \leq is 6

then prove that the relation \leq is a partial order relation in B.

O.3 i.

then this complement is unique.

expansion $xyz + x\bar{y}z + \bar{x}yz + \bar{x}\bar{y}z + \bar{x}\bar{y}\bar{z}$

defined by $a \le b \Rightarrow a \lor b = b$, $a \land b = a$

- Prove that the set of all positive rational numbers forms a group under the 4 O.4 i. composition defined by a*b=ab/2.
 - ii. Define Normal subgroup. Prove that the intersection of any two normal 6 subgroup of a group is a normal subgroup.

6

- OR iii. If the system (R, +, .) be a ring R, then prove that
 - (a) $a.0 = 0.a = 0 \ \forall \ a \in R$.

1

1

4

- (b) $a.(-b) = (-a).b = -(a.b) \ \forall \ a, \ b \in R$
- (c) $(-a).(-b) = a.b \ \forall \ a, \ b \in R$.
- Prove that a tree with *n* vertices has exactly *n-1* number of edges. O.5 i.
 - If $\Delta(G)$ is the maximum degree of any vertex of a graph G, then prove that 6 $\chi(G) \leq 1 + \Delta(G)$.
- OR iii. Define- Circuit, Multigraph, Complete graph, Hamiltonian graph with 6 suitable example and diagram.
- (a) Determine the generating function of the given numeric function a_r 4 Q.6 i. where

$$a_r = \begin{cases} 2^r & \text{if } r \text{ is even} \\ -2^r & \text{if } r \text{ is odd.} \end{cases}$$

- (b) Prove that ${}^{n}C_{r} = {}^{n-1}C_{r} + {}^{n-1}C_{r-1}$.
- Solve the recurrence relation $a_r 5 a_{r-1} + 6 a_{r-2} = 2 + r$, $r \ge 2$ 6 with boundary conditions $a_0 = 1 = 1$ and $a_1 = 1$.
- OR iii. Solve $y_{h+1}-y_h=h$ with $y_0=1$ by using the method of generating 6 function.

```
Faculty & Ergg
     End Sem (ordd) Examination
                                    Dec - 2018
              Discrete Mathematics
              C53BS03/IT3BS06
                                         Branch - CSE/ITT
 Programme - B. Tech.
              one-one not onto
Qu. O i
          a) Reflexine sulation & b)
            2 ≤n => x=n
          ()
             closure and associative
          a)
          a) set 6= $1,2,3,4) jecosoms a group under addition modulo 5
      Vi
      VII
      vili
          d) \frac{n(n-1)}{2} = \frac{12(12-1)}{2} = 66
              1 and 2.
          ()
               n = 15
           A = ATA then R is a relation
Qui Q i). R will be an equivalence exclation if it is
      Replexive, Symonetric and transitive.
    Replexive cer at I then a-a=0 (even int)
      : (a,a) ER, Y a EI
     Hence R is a sufferive sulation.
                                                    (+1)
    Symmetric cet a, b & I
    It a-b = even integen them b-a is also an even int
    (a,b) (-R => (b,a) (-R is towe.
    Hence Ris symmetric ecclation
                                                    (+1)
    Teamsitive let a, b, c & I
    To a-b= even int & b-c= even int then
    (a-b) + (b-c) = a-c= even int
    : (a,b) ER and (b,c) ER => (a,c) ER is true
```

Hence R is transitive quelotion.

(+)

3. . @ Humber g students who play Tennis and Cricket
but not Hockey = |TNC|- 1TNCNH|
= 13-5=8

Qu. (3. i). Egiven that (LIS) is a distributed lattice where a GL & (b &c) are its complement and =0, avb=1, anc=0, avc=1

To show complement is unique we have to show

they are equal b = b 1

= bn(avc)

= (bna) v(bnc)

= (anb) v (bnc)

= 0 v (bn()

= (anc) v (bnc)

= (avb) nc

= 110

= c Hure proved.

3 3 000 0 mintenm 3 3 3 3 000 0

(t)

Step I	Group	Minterm	Variable
	0	0	000
	t	1	001
	2	3	011
		5	101
	3	7	111

Step II

epicrip	Minterm	Variable
0	0,1	00 X
1	1,3	OXI
	1,5	701
2	3,7	×II
	517	ı×ı

OR III) Partial order relation-

A relation R on a set A is called partial order sulcition, is a Ris ocylexive i.e aRa, VacA

- b) R is antisymmetric i.e. aRb, bRa => a=b , 9,6 FA
- c) A is transitive i.e aRb, bRc => aRc , aib, c +A (H)

To prove relation & is partial order relation following properties should be subspied.

a) Replexivity, let a & B, we have

=) a ≤ a thence ≤ is sughexive

b) Anhi symmetry. Let a, b & B, we have asb, b < a = anb=a, bna=b| avb=b, bva=a => anb=bna avb=bva b=a

Hence & is out symmetric

Hence ≤ is teconsitive NowI+ is proved that the relation ≤ is a partial order relation in B.

Qu. Q i) int Q+ denote the set g all possitive evaluational nu.

Closure property for a, bf Q+, (ab) is also in Q+ (+1)

Therefore Q+ is closed.

Associative preparty Let $a,b,c \in \mathbb{Q}+$. Then $(a * b) * c = (\frac{ab}{2}) * c = (\frac{ab}{2}) \cdot 2 = \frac{abc}{4}$ $a * (b * c) = a * (\frac{bc}{2}) = \frac{a}{2}(\frac{bc}{2}) = \frac{abc}{4}$

Associating sahis pied

Existence q identity - e will be identity element if $e \in Q_+$ How $e \neq a = a =$ ea = a = ea = 2a = ea = 2a =0

D e=2, cincu at Q+ 0 a≠0

How 2 + Q+

2 x a = 2a = a = a x 2. Idulity satisfied

Existence & inverse of a

 $b + a = e = 2 \implies bq = 2 \implies b = \frac{4}{a} \leftarrow Q +$

Now (4) = 40 = 2 = 0 + (4)

Each element in 0+ is inversible.

Hence given set bouns a group.

(a ii). Moremal subgroup: A subgroup H of a group G is said to be normal subgroup of G if for every n CG, h CH sehat EH on settat EH Ut HAK be any two normal subgroups, 2+4, y EHAK : x (4) y (+1) my nt +H xthiytk=) myntek How mynt (H, mynt (K=) mynt (HOK " neh, y + HNK =) mynt + HNK, HNK is normal subgroup. OR iii) (a) 0+0=0 a. (0+0)=9.0 a. 0 + a. 0 = a. 0 a.o + a.o = a.o + o a. 0 = 0. Similar for 2nd part b). a+ (-a) = 0 (a+1-a)].b=0.b a.b+(-a).b= o.b $a \cdot b + (-a) \cdot b = 0$ (-a). b = - (a.b). Similar for 2nd part (+2) (). (-a).(-b) = (.(-b) put -a=C = - ((.b) = - [(-a).b] = -[-(a.b)] = a.b+2) Qu. (F). By mathemortical induction e=0 n=1 e=1 n=2 6=5 (n-1) Theorem is valid for all trees having less than n rechi Now T-e= Ti+T2 Ti has no vertices such that nitnz=n T2 1- 1/2 -1-No of edges in Ti = n, -1 $T_2 = n_2 - 1$ Total - Ti+t2 = ni+n2-2 => T-e=n-2 T= e+n-2 = 1+n-2 = n-1 Hence preored

ii). By mathematical induction n=1,2 $\chi(G) \leq 1+\Delta$ $1 \leq 1+0$ & $2 \leq 1+1$ Theorem clearly follows n=n-1 Induction hypothesis. 2 (G-V) & I+ A (+2)n=n For this add one vertex v to G-V i degree of each vertex is athost A them A colours are elegised and one different colours is assigned to or iii) Grant. It is a closed walk in which initial of final restices are same. Degrece q each vertex is 2. Mulhgraph - A graph having some parallel edges. I (+1.5) complete graph. If each restex is connected to everyother (+1.5) Vertexi 🛛 Hamiltonian graph - It contain a closed walk that traverses every vertex of the graph exactly once except the starting vertex at which the walk terminater (1.5) du. 6). i). 6) A181 = 408° + 418 + 4282+ ---Put A=0,1,2,3--, then $A_0=1$, $A_1=-2$, $A_2=4$, $A_3=-8$, $A_4=16$, $A_5=-32$ A(3) = 1-23+432-833+1634-3285+ = 1-23+123)2-123)3+123)4-123)5+-. (+1) = (1+23) = 1+23 = m-1! [1 + 1 - n]

odt n//- 2! = (n-1)! [1 + n-2] = (n-1)! [(n-se) se] = n! = n (2

```
. 8. ii) Homogenious esolution -
                m^2 - 5m + 6 = 0 = 2 = 2 = 3
                are = C12 + C232
            Particular solution - Tocal solution Ao+A12 ( Part it in
             given eq.) 2A0-7A1+2A1x=2+x
                             A = 14 , A = 1
                a (P) = 11 + 12 %
                                                                    (+2)
            Total Solution - ap = (12 + 12 + 1 + 1 12 -0
           Put boundary conditions C_1+C_2=-\frac{7}{4}
                                           2(1+312= -9/4
            Hence q = -3, l_2 = \frac{5}{4}
                                                                    (+2)
          Now eq (1) ar= -32+5 3+11+12
       OR (ii) Y(2) = = yn th = yn to + yt + yz t2 - -.
           E yhth-E yhth = E hth
           (y+y2++y3++--) - Y(t) = ++2+2+3+3+---
              \frac{Y(t)-\frac{1}{7}}{t}-Y(t)=t(1+2t+3t^2)
                                                    [: yo=1]
               Y(t) - 1 - tY(t) = t^{2}(1-t)^{-2}
               (1-t) \Upsilon(t) = 1 + t^2 (1-t)^{-2}
              Y(t) = \frac{1}{1-t} + \frac{t^2}{(1-t)^3} = (1-t)^7 + t^2(1-t)^{\frac{-3}{2}}
         \sum_{h=0}^{4} y_{h} t^{h} = \sum_{h=0}^{4} t^{h} + t^{2} \sum_{h=0}^{4} \frac{(h+1)(h+2)}{2} t^{h}
                                                                    (+1)
                   = = 1 + = (h+1)[h+2) tht2
h=0 2
            Equating coefficent of the
```

Jn=1+支(h-1)h.